All functions
|
applySettingsDefault
|
Provides the default settings for the different samplers in runMCMC |
BayesianTools
|
BayesianTools |
bridgesample
|
Calculates the marginal likelihood of a chain via bridge sampling |
checkBayesianSetup
|
Checks if an object is of class 'BayesianSetup' |
convertCoda
|
Convert coda::mcmc objects to BayesianTools::mcmcSampler |
correctThin
|
Checks if thin is conistent with nTotalSamples samples and if not corrects it. |
correlationPlot
|
Flexible function to create correlation density plots |
createBayesianSetup
|
Creates a standardized collection of prior, likelihood and posterior functions, including error checks etc. |
createBetaPrior
|
Convenience function to create a beta prior |
createBreakMat
|
create break matrix |
createLikelihood
|
Creates a standardized likelihood class#' |
createMcmcSamplerList
|
Convenience function to create an object of class mcmcSamplerList from a list of mcmc samplers |
createPosterior
|
Creates a standardized posterior class |
createPrior
|
Creates a standardized prior class |
createPriorDensity
|
Fits a density function to a multivariate sample |
createProposalGenerator
|
Factory that creates a proposal generator |
createSmcSamplerList
|
Convenience function to create an object of class SMCSamplerList from a list of mcmc samplers |
createTruncatedNormalPrior
|
Convenience function to create a truncated normal prior |
createUniformPrior
|
Convenience function to create a simple uniform prior distribution |
DE
|
Differential-Evolution MCMC |
DEzs
|
Differential-Evolution MCMC zs |
DIC
|
Deviance information criterion |
DREAM
|
DREAM |
DREAMzs
|
DREAMzs |
gelmanDiagnostics
|
Runs Gelman Diagnotics over an BayesianOutput |
generateParallelExecuter
|
Factory to generate a parallel executer of an existing function |
generateTestDensityMultiNormal
|
Multivariate normal likelihood |
getCredibleIntervals
|
Calculate confidence region from an MCMC or similar sample |
getDharmaResiduals
|
Creates a DHARMa object |
getMetropolisDefaultSettings
|
Returns Metropolis default settings |
getPanels
|
Calculates the panel combination for par(mfrow = ) |
getPossibleSamplerTypes
|
Returns possible sampler types |
getPredictiveDistribution
|
Calculates predictive distribution based on the parameters |
getPredictiveIntervals
|
Calculates Bayesian credible (confidence) and predictive intervals based on parameter sample |
getSample
|
Extracts the sample from a bayesianOutput |
getVolume
|
Calculate posterior volume |
GOF
|
Standard GOF metrics
Startvalues for sampling with nrChains > 1 : if you want to provide different start values for the different chains, provide a list |
histMarginal
|
histogram for marginalPlot |
likelihoodAR1
|
AR1 type likelihood function |
likelihoodIidNormal
|
Normal / Gaussian Likelihood function |
logSumExp
|
Funktion to compute log(sum(exp(x)) |
MAP
|
calculates the Maxiumum APosteriori value (MAP) |
marginalLikelihood
|
Calcluated the marginal likelihood from a set of MCMC samples |
marginalPlot
|
Plot MCMC marginals |
mcmcMultipleChains
|
Run multiple chains |
Metropolis
|
Creates a Metropolis-type MCMC with options for covariance adaptatin, delayed rejection, Metropolis-within-Gibbs, and tempering |
metropolisRatio
|
Function to calculate the metropolis ratio |
createMixWithDefaults
|
Allows to mix a given parameter vector with a default parameter vector |
plotHist
|
plot histogram |
plotSensitivity
|
Performs a one-factor-at-a-time sensitivity analysis for the posterior of a given bayesianSetup within the prior range. |
plotTimeSeries
|
Plots a time series, with the option to include confidence and prediction band |
plotTimeSeriesResiduals
|
Plots residuals of a time series |
plotTimeSeriesResults
|
Creates a time series plot typical for an MCMC / SMC fit |
rescale
|
Rescale |
runMCMC
|
Main wrapper function to start MCMCs, particle MCMCs and SMCs |
sampleEquallySpaced
|
Gets n equally spaced samples (rows) from a matrix or vector |
sampleMetropolis
|
gets samples while adopting the MCMC proposal generator |
setupStartProposal
|
Help function to find starvalues and proposalGenerator settings |
smcSampler
|
SMC sampler |
stopParallel
|
Function to close cluster in BayesianSetup |
testDensityBanana
|
Banana-shaped density function |
testDensityInfinity
|
Test function infinity ragged |
testDensityMultiNormal
|
3d Mutivariate Normal likelihood |
testDensityNormal
|
Normal likelihood |
testLinearModel
|
Fake model, returns a ax + b linear response to 2-param vector |
tracePlot
|
Trace plot for MCMC class |
Twalk
|
T-walk MCMC |
updateProposalGenerator
|
To update settings of an existing proposal genenerator |
violinPlot
|
Violin Plot |
VSEM
|
Very simple ecosystem model |
vsemC
|
C version of the VSEM model |
VSEMcreateLikelihood
|
Create an example dataset, and from that a likelihood or posterior for the VSEM model |
VSEMcreatePAR
|
Create a random radiation (PAR) time series |
VSEMgetDefaults
|
returns the default values for the VSEM |
WAIC
|
calculates the WAIC |