All functions

applySettingsDefault

Provides the default settings for the different samplers in runMCMC

BayesianTools

BayesianTools

bridgesample

Calculates the marginal likelihood of a chain via bridge sampling

checkBayesianSetup

Checks if an object is of class 'BayesianSetup'

convertCoda

Convert coda::mcmc objects to BayesianTools::mcmcSampler

correctThin

Checks if thin is conistent with nTotalSamples samples and if not corrects it.

correlationPlot

Flexible function to create correlation density plots

createBayesianSetup

Creates a standardized collection of prior, likelihood and posterior functions, including error checks etc.

createBetaPrior

Convenience function to create a beta prior

createBreakMat

create break matrix

createLikelihood

Creates a standardized likelihood class#'

createMcmcSamplerList

Convenience function to create an object of class mcmcSamplerList from a list of mcmc samplers

createPosterior

Creates a standardized posterior class

createPrior

Creates a standardized prior class

createPriorDensity

Fits a density function to a multivariate sample

createProposalGenerator

Factory that creates a proposal generator

createSmcSamplerList

Convenience function to create an object of class SMCSamplerList from a list of mcmc samplers

createTruncatedNormalPrior

Convenience function to create a truncated normal prior

createUniformPrior

Convenience function to create a simple uniform prior distribution

DE

Differential-Evolution MCMC

DEzs

Differential-Evolution MCMC zs

DIC

Deviance information criterion

DREAM

DREAM

DREAMzs

DREAMzs

gelmanDiagnostics

Runs Gelman Diagnotics over an BayesianOutput

generateParallelExecuter

Factory to generate a parallel executer of an existing function

generateTestDensityMultiNormal

Multivariate normal likelihood

getCredibleIntervals

Calculate confidence region from an MCMC or similar sample

getDharmaResiduals

Creates a DHARMa object

getMetropolisDefaultSettings

Returns Metropolis default settings

getPanels

Calculates the panel combination for par(mfrow = )

getPossibleSamplerTypes

Returns possible sampler types

getPredictiveDistribution

Calculates predictive distribution based on the parameters

getPredictiveIntervals

Calculates Bayesian credible (confidence) and predictive intervals based on parameter sample

getSample

Extracts the sample from a bayesianOutput

getVolume

Calculate posterior volume

GOF

Standard GOF metrics Startvalues for sampling with nrChains > 1 : if you want to provide different start values for the different chains, provide a list

histMarginal

histogram for marginalPlot

likelihoodAR1

AR1 type likelihood function

likelihoodIidNormal

Normal / Gaussian Likelihood function

logSumExp

Funktion to compute log(sum(exp(x))

MAP

calculates the Maxiumum APosteriori value (MAP)

marginalLikelihood

Calcluated the marginal likelihood from a set of MCMC samples

marginalPlot

Plot MCMC marginals

mcmcMultipleChains

Run multiple chains

Metropolis

Creates a Metropolis-type MCMC with options for covariance adaptatin, delayed rejection, Metropolis-within-Gibbs, and tempering

metropolisRatio

Function to calculate the metropolis ratio

createMixWithDefaults

Allows to mix a given parameter vector with a default parameter vector

plotHist

plot histogram

plotSensitivity

Performs a one-factor-at-a-time sensitivity analysis for the posterior of a given bayesianSetup within the prior range.

plotTimeSeries

Plots a time series, with the option to include confidence and prediction band

plotTimeSeriesResiduals

Plots residuals of a time series

plotTimeSeriesResults

Creates a time series plot typical for an MCMC / SMC fit

rescale

Rescale

runMCMC

Main wrapper function to start MCMCs, particle MCMCs and SMCs

sampleEquallySpaced

Gets n equally spaced samples (rows) from a matrix or vector

sampleMetropolis

gets samples while adopting the MCMC proposal generator

setupStartProposal

Help function to find starvalues and proposalGenerator settings

smcSampler

SMC sampler

stopParallel

Function to close cluster in BayesianSetup

testDensityBanana

Banana-shaped density function

testDensityInfinity

Test function infinity ragged

testDensityMultiNormal

3d Mutivariate Normal likelihood

testDensityNormal

Normal likelihood

testLinearModel

Fake model, returns a ax + b linear response to 2-param vector

tracePlot

Trace plot for MCMC class

Twalk

T-walk MCMC

updateProposalGenerator

To update settings of an existing proposal genenerator

violinPlot

Violin Plot

VSEM

Very simple ecosystem model

vsemC

C version of the VSEM model

VSEMcreateLikelihood

Create an example dataset, and from that a likelihood or posterior for the VSEM model

VSEMcreatePAR

Create a random radiation (PAR) time series

VSEMgetDefaults

returns the default values for the VSEM

WAIC

calculates the WAIC