Flexible function to create correlation density plots

correlationPlot(mat, density = "smooth", thin = "auto",
  method = "pearson", whichParameters = NULL, ...)

Arguments

mat

object of class "bayesianOutput" or a matrix or data frame of variables

density

type of plot to do. Either "smooth" (default), "corellipseCor", or "ellipse"

thin

thinning of the matrix to make things faster. Default is to thin to 5000

method

method for calculating correlations. Possible choices are "pearson" (default), "kendall" and "spearman"

whichParameters

indices of parameters that should be plotted

...

additional parameters to pass on to the getSample, for example parametersOnly =F, or start = 1000

References

The code for the correlation density plot originates from Hartig, F.; Dislich, C.; Wiegand, T. & Huth, A. (2014) Technical Note: Approximate Bayesian parameterization of a process-based tropical forest model. Biogeosciences, 11, 1261-1272.

See also

marginalPlot plotTimeSeries tracePlot

Examples

dat = generateTestDensityMultiNormal(n = 100000, sample = TRUE) correlationPlot(dat(100000))