Generates a 3 dimensional multivariate normal likelihood function.

generateTestDensityMultiNormal(mean = c(0, 0, 0),
  sigma = "strongcorrelation", sample = F, n = 1, throwErrors = -1)

Arguments

mean

vector with the three mean values of the distribution

sigma

either a correlation matrix, or "strongcorrelation", or "no correlation"

sample

should the function create samples

n

number of samples to create

throwErrors

parameter for test purpose. Between 0 and 1 for proportion of errors

Details

3-d multivariate normal density function with mean 2,4,0 and either strong correlation (default), or no correlation.

See also

testDensityBanana testLinearModel

Examples

# sampling from the test function x = generateTestDensityMultiNormal(sample = TRUE, n = 1000)(1000) correlationPlot(x)
#> Warning: Parameter 'mat' is not of class 'bayesianOutput', set plotPrior to FALSE.
# generating the the density density = generateTestDensityMultiNormal(sample = FALSE) density(x[1,])
#> [1] 0.2472597